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Synthetic biology, the science of engineering complex biological systems with novel functions, is increas-
ingly fascinating researchers across disciplines who gather to design functional biological assemblies in
a rational and systematic manner. Although initial success stories were based on reprogramming prokaryotic
and lower eukaryotic cells, the design of synthetic mammalian gene circuits is becoming increasingly popular
because it promises to foster novel therapeutic opportunities in the not-so-distant future. Here, we discuss
the latest generation of mammalian synthetic biology devices assembled to form complex synthetic gene
networks, such as regulatory cascades, logic evaluators, hysteretic circuits, epigenetic toggle switches,
time-keeping components, drug discovery tools, and ‘‘cell phone’’ units. We further highlight how such
circuits could be interconnected to achieve higher-order control networks such as synthetic hormone-like
communication systems in animals or synthetic ecosystems with dynamic interspecies crosstalk.
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delayed expression kinetics (Weber et al., 2007c) and allowing

the engineering of synthetic hormone systems in mice as well

as the assembly of entire ecosystems with synthetic intra- and

interspecies crosstalk (Weber et al., 2007a). Because pioneering

strategies to engineer synthetic networks in bacteria and yeast

(see references above) are covered elsewhere, we focus on

the latest developments in the design of complex mammalian

gene networks and discuss future directions of mammalian

synthetic biology.

Mammalian Cell-Compatible Biological Parts
As Building Blocks For Construction
Of Synthetic Gene Networks
A consortium of experts from the Lawrence Berkeley National

Laboratory, MIT, and Harvard University have suggested to

define synthetic biology as ‘‘the design and construction of

new biological parts, devices, and systems and the redesign of

existing, natural biological systems for useful purposes’’

(http://syntheticbiology.org). This definition and the approach

to construct complex systems in living cells were inspired by

information technology and electronic engineering, where

complex assemblies like computer networks or the internet are

constructed by interconnecting basic modular parts such as

transistors, capacitors, or resistors. To transfer this design

principle—the construction of higher-order systems by assem-

bling modular parts—to biology, synthetic biologists prefer to

use standardized biological parts with well-defined and charac-

terized properties that can be connected to each other in

a predictable manner. Next, we provide an overview of today’s

most prominent mammalian cell-compatible biological parts:

synthetic DNA-binding receptors and transcription factors,

chemically induced dimerizing proteins, and signal-producing

enzymes. Recently developed RNA-based switches are

highlighted elsewhere and in this issue (Win and Smolke, 2008;

Win et al., 2009).

Synthetic DNA-Binding Receptors

and Transcription Factors

Synthetic DNA-binding receptors and transcription factors repre-

sent the most prominent family of mammalian cell-compatible
Introduction
Complementary to classic (systems) biology where scientists

take biological systems apart to describe or gain insight into

functionalities of living systems, synthetic biology takes advan-

tage of rational reassembly of well-characterized biological parts

and devices into functional systems with novel or improved

characteristics. In recent years, systems biology has provided

an impressive wealth of details on the operation dynamics of

complex biological systems that had largely been elusive during

the genomics era. Because prokaryotes and lower eukaryotes

are more accessible to rational and precise genetic engineering,

pioneering advances in synthetic biology have mainly been

achieved in Escherichia coli and the yeast Saccharomyces cere-

visiae (Benner and Sismour, 2005; Drubin et al., 2007; Sprinzak

and Elowitz, 2005). Nonlimiting highlights include the first

synthetic bistable toggle switch (Gardner et al., 2000), self-

oscillating genetic networks (Elowitz and Leibler, 2000), artificial

cell-to-cell communication systems for the construction of

pattern-forming band-detection filters (Basu et al., 2005),

E. coli-based synthetic ecosystems (Balagadde et al., 2008),

and the design of complex translation-control networks (Isaacs

et al., 2004; Win and Smolke, 2008). Synthetic biology is also

beginning to impact translational research as exemplified by

engineering of bacteria for improved lycopene production (Alper

et al., 2005) or the synthesis of artemisin, the precursor of the

antimalaria drug Coartem� (Martin et al., 2003).

Recent advances in heterologous mammalian transcription

control technology enabling precise adjustable and reversible

gene expression (Weber and Fussenegger, 2006, 2007a) have

prompted synthetic biology initiatives in mammalian cells and

entire animals (Deans et al., 2007; Greber and Fussenegger,

2007a; Kramer and Fussenegger, 2005; Kramer et al., 2004b;

Weber et al., 2007a, 2007c). After functional design of synthetic

replicas of natural network topologies (Weber and Fussenegger,

2002) such as regulatory cascades (Kramer et al., 2005, 2004b),

epigenetic toggle switches (Kramer et al., 2004b), and hysteretic

networks (Kramer and Fussenegger, 2005; May et al., 2008),

basic transcription control devices have been assembled and

interconnected to achieve higher-order control showing time-
ology 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 287
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biological parts for use in mammalian synthetic biology related to

gene networks. The DNA binding of these chimeric receptors and

transcription factors can be modulated by small-molecule

compounds or physical conditions and, depending on their

allostery, they bind to or are released from their operator in

response to the trigger (Weber and Fussenegger, 2007b).

Synthetic DNA-binding receptors and transcription factors are

typically engineered to modulate the activity of specific target

promoters by three distinct mechanisms (Weber and Fusseneg-

ger, 2006). (i) DNA-binding proteins which adjustably repress

promoters by binding to 30-placed operator modules. (ii)

Synthetic DNA-binding proteins fused to a transsilencing domain

(krueppel-associated box protein [KRAB] of human kox1) that

fine-tune expression of constitutive promoters when bound to

operators placed in their vicinity. (iii) Chimeric DNA-binding

proteins linked to transcription-activation domains (e.g., herpes

simplex virus protein 16 [VP16]) modulate transcription by

binding to cognate operators placed 50 of minimal eukaryotic

promoters (e.g., PhCMVmin). An impressive repertoire of such

synthetic mammalian transcription factors has been designed

and validated in mammalian cells and in mice and was shown

to be adjustable to a variety of compounds like antibiotics, Strep-

tomyces-derived quorum-sensing signals, metabolites, physical

conditions, amino acids, vitamins, or food additives (see Weber

and Fussenegger, 2007b for a comprehensive overview on

transcriptional repressors). Owing to their generic design,

synthetic transcription control systems are compatible and can

be simultaneously operated in mammalian cells for independent

or interconnected control of different (trans)genes (Fux et al.,

2004; Weber et al., 2002a). Also, all transcription-control modal-

ities can be optimized for expression performance and regulation

window using similar modification principles. (i) The synthetic

transcription factor can be expressed using different constitutive

(tissue-specific) promoters (Dickins et al., 2007). (ii) The DNA-

binding proteins can be fused to various transsilencing or trans-

activation domains optionally using linker peptides and/or

nuclear localization signals (Fussenegger et al., 2000; Weber

et al., 2002b). (iii) Different constitutive or minimal promoters

could be used to drive target gene expression (Weber et al.,

2002b). (iv) Operators can be multimerized to tandem units and

placed at different distances from constitutive or minimal

promoters (Gossen and Bujard, 1992; Weber et al., 2002b). (v)

When flanking inducible expression cassettes with insulator

sequences, transgene regulation can be shielded from disturbing

transcriptional influence originating from neighboring chromo-

somal sequences (Pluta et al., 2005). (iv) The DNA-binding

proteins can be mutagenized to optimize induction characteris-

tics (Urlinger et al., 2000) or reverse the DNA-binding character-

istics in the presence of a specific inducer (Gossen et al., 1995).

The tuning flexibility and compatibility among each other have es-

tablished DNA-binding transcription factors as the most impor-

tant class of proteins in the construction of synthetic gene

networks.

Chemically Induced Dimerizing Proteins

Chemically induced dimerization of engineered proteins has

been successfully used for trigger-adjustable induction of

membrane-bound receptor activity (Farrar et al., 1996), tran-

scription (Rivera et al., 1996; Zhao et al., 2003), translation

(Schlatter et al., 2003), secretion (Rivera et al., 2000), or enzyme
288 Chemistry & Biology 16, March 27, 2009 ª2009 Elsevier Ltd All
activity (Rossi et al., 1997). In contrast to DNA-binding transcrip-

tion factors, for which highly diverse classes of inducer

substances exist, chemically induced dimerization is currently

limited to the use of rapamycin-induced dimerization of FK-

binding protein (FKBP) with FRB (Rivera et al., 1996), FK506-

dependent dissociation of FM-FM homodimers (Rivera et al.,

2000), dimerization of two FKBP proteins by dimeric FK506

(FK1012, Ho et al., 1996), dimerization of FKBP with cyclophilin

C by fusion of FK506 to cyclosporin A (Belshaw et al., 1996),

and the aminocoumarin antibiotic-triggered homodimerization

of two bacterial gyrase subunits (GyrB, Zhao et al., 2003).

Signal-Producing Enzymes

Signal-producing enzymes can either be used to trigger

assembly of different proteins or to produce messenger/inducer

substances that activate transgene expression in target cells.

Enzyme-triggered assembly of two proteins can be achieved

by taking advantage of the E. coli biotin ligase BirA. BirA

catalyzes biotinylation of proteins containing a specific avitag

motif that can then heterodimerize with another protein fused

to streptavidin. For example, fusion of avitag to a DNA-binding

domain and streptavidin to a transactivation domain enables

biotin-inducible BirA-mediated reconstitution of a synthetic

transactivator that can activate specific target promoters (Weber

et al., 2007c).

Examples for enzyme-generated messenger or inducer

compounds include biotinidase, which liberates biotin from

biocytin in order to trigger biotin-responsive expression systems

(Weber et al., 2007a), or alcohol dehydrogenase, which converts

ethanol to acetaldehyde and so activates acetaldehyde-

inducible transcription modalities (Weber et al., 2007a).

Synthetic Gene Networks in Mammalian Cells
Heterologous transgene regulation systems described above

are minimal control devices that can be used to fine-tune tran-

scription of specific target genes in a dose-dependent manner.

They can also be interconnected to provide higher-order regula-

tory gene networks that enable complex signal processing,

optimized regulation performance, and unprecedented control

features inaccessible to simple control devices (Greber and

Fussenegger, 2007a). Following, we discuss several examples

on how individual transgene control devices could be assembled

into more complex gene networks with novel regulation charac-

teristics.

Synthetic and Semisynthetic Regulatory Cascades

A prominent example of a synthetic mammalian gene network

consisted of an artificial two-step signaling cascade in which

a small-molecule-responsive transcription factor controlled

expression of a second transcription factor that then modulated

transcription of the target gene (Kramer et al., 2003). This daisy-

chain interconnection of individual transcription control circuits

was then successfully used to design a three-level transcription

cascade that provides discrete multilevel control in response to

different input signals (Kramer et al., 2003). This synthetic

mammalian three-step cascade consisted of the TET-responsive

promoter PTET driving dicistronic expression of TET-dependent

transactivator (tTA) and erythromycin-dependent transactivator

(ET1), whereby tTA was auto-activating PTET in a positive feed-

back loop together with cocistronically encoded ET1. ET1 was

programmed to activate the erythromycin (EM)-responsive
rights reserved



Chemistry & Biology

Review
promoter PETR, which controlled transcription of the streptogra-

min-dependent transactivator, a PIP-VP16 fusion protein (PIT).

PIT was then activating its cognate promoter PPIR, thereby

controlling expression of human placental secreted alkaline

phosphatase (SEAP) (Figure 1A). The signaling cascade could

be interrupted at any level by the addition of TET, EM, or pristina-

mycin I, specifically inactivating tTA, ET1, and PIT, respectively.

Because each antibiotic represses the cascade at a different level

in the cascade, the impact of the transcription leakiness on the

overall transgene expression level varies depending at which

point in the cascade it occurs: expression levels of 100% (no

cascade intervention), 66% (intervention at first level of cascade),

33% (intervention at second level), and close to 0% (intervention

at third and final level) of transgene were possible (Figure 1A). In

this way a precise expression level could be achieved by addition

of a particular antibiotic that enables molecule-specific titration of

target genes (Kramer et al., 2003).

Capitalizing on the success of the synthetic three-level

cascade providing four discrete expression levels in response

to three different antibiotics, Kramer and coworkers have also

designed a semisynthetic cascade that could process endoge-

nous (e.g., hypoxia) and exogenous (e.g., an antibiotic) signals

to provide up to six discrete expression levels defined by the

combination of input signals (Figure 1B) (Kramer et al., 2005).

The endogenous hypoxia signal was plugged into the cascade

via hypoxia-responsive element fused to PSV40min. Under

hypoxia, the endogenous hypoxia-inducible factor (HIF)-1a

translocates into the nucleus, heterodimerizes with HIF-1b

and binds to hypoxia-responsive elements, thereby inducing

PSV40min. At normal oxygen levels (normoxia), hypoxia-inducible

factor (HIF)-1a is targeted for proteosomal destruction via its

oxygen-dependent degradation domain. The endogenous

hypoxia-inducible sensor system was linked to expression of

PIT, which was set to control PPIR-driven tTA expression and

tTA was arranged to drive PTET-controlled expression of SAMY

(Figure 1B). Using different combinations of endogenous

(hypoxia) or exogenous (addition of antibiotics) stimuli, SAMY

production could be adjusted to six discrete expression levels

(Kramer et al., 2005). Semisynthetic cascades provide a first

example how synthetic gene networks could be functionally

coupled to endogenous control circuits and yet retain respon-

siveness to external intervention factors.

Coupled Transcription-Translation Networks

Because the flow of genetic information from DNA to protein

involves transcription and translation, transgene expression

could be adjusted at both levels to enable protein production

fine-tuning with unmatched precision and tightness. Although

individual transcription (Gossen et al., 1995, see above) and

translation (Schlatter et al., 2003) units were successfully used

for trigger-inducible heterologous protein production in mamma-

lian cells, their regulation windows (the difference in protein

levels reached under fully induced or repressed conditions)

seemed to be a system-specific constant: maximum protein

production under induced conditions were typically associated

with significant leakiness in the repressed state and completely

tight control systems only reached mediocre maximum produc-

tion levels. Coupled transcription-translation networks that

suppress leaky transcripts could therefore expand the regulation

window and improve overall regulation performance.
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In the first coupled transcription-translation network, tetracy-

cline (TETOFF-)-repressible expression of SEAP was functionally

linked to EM-inducible expression of a small interfering RNA

(siRNAGFP) specific for a GFP-derived sequence tag (TAGGFP)

engineered into the 50 untranslated region of SEAP (Figure 1C,

Malphettes and Fussenegger, 2006). Although SEAP production

was primarily responsive to TET showing typical TETOFF expres-

sion profiles, EM-induced kickoff of siRNAGFP transcription

during TET-mediated SEAP repression reduced leaky SEAP

transcript levels and improved the overall regulation perfor-

mance of the TETOFF system. The use of siRNA-specific

sequence tags unrelated to the target gene enables generic

target gene-independent translation control and provides

maximum flexibility for use in any coupled transcription-transla-

tion network.

In a similar approach, Jim Collins and coworkers (Deans et al.,

2007) used the isopropyl-b-D-thiogalactopyranoside (IPTG)-

inducible Lac switch system to coregulate expression of

tetracycline-dependent receptor (TetR) and the gene of interest

(GOI) by conditional IPTG-modulated binding LacI to its cognate

operator (lacO) placed between the constitutive promoter and

TetR or GOI, respectively (Figure 1D). GOI was engineered

to contain a sequence tag in the 30 untranslated region that

was specific for a short hairpin RNA (shRNA) transcribed in a

TET-specific operator-repressible TET-responsive manner using

a TET-specific operator-linked PU6 promoter (Figure 1D). In the

absence of IPTG, LacI represses transcription of TetR and

GOI, which results in derepression of the TET-specific oper-

ator-linked PU6 promoter and consequent maximum shRNA

expression leading to RNA-interference-based elimination of

TAGed GOI and remarkable repression of GOI to over 99%.

In order to facilitate the design of such coupled transcription-

translation networks, a recent study (Greber and Fussenegger,

2007b) described an efficient strategy for the simultaneous

expression of synthetic transcription factors (see above)

harboring intronically encoded GOI-specific shRNAs. The poten-

tial of this integrated concept was exemplified by the simulta-

neous expression and knockdown of six genes controlled by

a single promoter (Greber and Fussenegger, 2007b). Also,

intronic siRNA-based translation control has recently been

shown to improve the dynamic range of epigenetic toggle

switches (see below; Greber et al., 2008).

Hysteretic Gene Switches

In contrast to the above-described inducible systems with excel-

lent possibilities for adjustment and reversible on/off regulation,

many naturally occurring gene switches tend to behave hyster-

etically (Ozbudak et al., 2004). Classic genetic switches provide

a dose-dependent graded expression profile in response to the

inducer; however, in hysteretic switches the threshold required

to switch from one state to another depends on the expression

history, the state of the switch before the change in the inducer

concentration. Hysteresis is an important phenomenon, for

example in the lactose utilization operon of E. coli (Ozbudak

et al., 2004) or in ensuring unidirectional cell-cycle progression

in eukaryotic cells (Sha et al., 2003). Hysteretic switches make

gene expression more robust and noise resistant because the

expression state remains unchanged following small fluctuations

in inducer levels and only switches in response to significant

inducer concentrations changes.
logy 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 289
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Figure 1. Synthetic gene networks in mammalian cells
(A) Synthetic transcription cascade. The (TET)-responsive promoter PTET triggers expression of the TET- and macrolide-dependent transactivators tTA and ET1.
tTA activates PTET in a positive feedback loop while ET1 induces expression of the streptogramin-dependent transactivator PIT under the control of the macro-
lide-responsive promoter PETR. PIT finally triggers production of the output gene SEAP (human placental secreted alkaline phosphatase) by binding and activating
PPIR. The transcription cascade can be interrupted by specifically inactivating tTA, ET1, or PIT by the addition of TET, erythromycin (EM) or pristinamycin I (PI),
respectively, which results in up to four discrete SEAP expression levels.
(B) Semi-synthetic transcription cascade. Under normoxia (NOX), the hypoxia-inducible factor 1a (HIF-1a) is primed for degradation by the proteasome (P). Under
hypoxia (HOX), HIF-1a translocates into the nucleus and binds to hypoxia-responsive element (HRE) triggering activation of the minimal simian virus 40 promoter
(PSV40min) thereby controlling expression of PIT. PIT induces production of tTA by binding and activating PPIR. tTA controls expression of the output gene SAMY
(Bacillus stearothermophilus-derived secreted a-amylase) via its cognate promoter PTET. The semi-synthetic transcription cascade is interrupted under normoxia
or by the addition of PI and TET for inactivating HIF-1a, PIT, and tTA, respectively, which results in up to six discrete SAMY expression levels.
(C) Coupled transcription-translation cascades providing improved regulation performance and tightness. In the absence of EM, E-KRAB represses expression
of a small interfering RNA (siRNAGFP) specific for a GFP-derived sequence tag (TAG), whereas triggers degradation of SEAP-encoding mRNA harboring the TAG
sequence. SEAP expression is activated by tTA in the absence of TET. Therefore, SEAP is fully expressed in the absence of regulating antibiotics, while addition of
both, TET and EM represses SEAP below the detection limit. Addition of only one antibiotic results in leaky expression.
(D) One-input-triggered transcription-translation cascade that improves transgene induction characteristics. In the absence of IPTG, LacI represses production
of the TET repressor TetR and the gene of interest (GOI). In addition, expression of a short hairpin RNA (shRNA), which is specific for a TAG sequence contained in
290 Chemistry & Biology 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved
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Two studies have recently reported design and validation of

synthetic hysteretic switches in mammalian cells (Kramer and

Fussenegger, 2005; May et al., 2008): (i) (Kramer and Fusseneg-

ger, 2005) put tTA under the control of a novel hybrid promoter,

which enabled dual TET- and EM-responsive expression. This

configuration created a positive feedback loop that rapidly

increases tTA expression along with cocistronically encoded

SEAP (Figure 1E). In addition, the positive feedback loop can

be interrupted by E-KRAB, which, in the absence of EM, binds

to the E-specific operator (ETR) operator contained in the hybrid

promoter and overrides tTA-based promoter activation. With

increasing EM concentrations, SEAP expression increased, de-

pending on the dose, until a plateau was reached. When the EM

concentrations were reduced further, SEAP levels decreased,

but the decrease occurred at significantly lower EM concentra-

tions than required for triggering the previous activation, thereby

demonstrating hysteretic behavior (Kramer and Fussenegger,

2005). (ii) In a subsequent approach, May and coworkers (May

et al., 2008) reduced the complexity of the first-generation

hysteretic switch by cocistronically expressing the reverse tetra-

cycline-dependent transactivator (rtTA) and enhanced green

fluorescent protein (eGFP) in an autoregulated manner (Fig-

ure 1F). Administration of the TET analog doxycycline (DOX) trig-

gers binding of rtTA to its promoter PTET, thereby further

increasing the expression of rtTA and of cocistronically encoded

eGFP. Fluorescence-activated cell sorting analysis of mamma-

lian cells treated with increasing DOX concentrations revealed

bimodal eGFP expression: cells are either highly fluorescent or

lack any fluorescence, but no intermediate expression levels

were detected that would be expected for classic transcription

control devoid of any positive feedback loop (Rossi et al.,

2000). This bimodal pattern, which is in accordance with

a stochastic model, results in stable and uniform levels of

expression across the entire cell population, and hardly any

clonal variation was observed. The hysteretic characteristics of

this system were evaluated by first increasing DOX concentra-

tions until all the cells exhibited eGFP fluorescence, followed

by a gradual decrease in DOX, resulting in a decrease in the

number of fluorescent cells. This decrease was observed at

DOX concentrations that were significantly lower than required

to yield comparable fluorescent fractions when ramping up

DOX (Figure 1F, May et al., 2008).

Synthetic Gene Networks: Performing Basic
Computational Functions
Boolean algebra, a logical calculus of truth values, is at the basis

of all devices that process information. Therefore, genetic

circuits, which can be designed to perform logical operations

of conjunction and disjunction, represent the basic building
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blocks for cell-based assemblies that could be expected to

execute basic computational functions.

Boolean NAND Gate

Boolean operations have been realized in a pilot study in

mammalian cells by Kramer et al. (2004a), in which transcrip-

tional control systems were interconnected to operate as NOT,

IF, OR, NAND, and NOR gates. For example, the NAND (NOT

AND, Figure 2A) gate consisted of ET1, which, in the absence

of EM, binds and activates PETR, resulting in the expression of

PIT. In the absence of the streptogramin antibiotic pristinamycin

I (PI), PIT binds and activates PPIR, thus triggering the expression

of the output gene SEAP. Only in the absence of both antibiotics

(EM = 0 AND PI = 0) is SEAP expression active (SEAP = 1); in all

other configurations SEAP is inactive (SEAP = 0), reflecting the

characteristics of the NAND gate.

Boolean AND Gate

Although the first BioLogic gates (Kramer et al., 2004a) relied on

transcriptional control, a study by Rinaudo et al. (2007)

described a universal siRNA-based logic evaluator, which oper-

ates in mammalian cells. In this configuration, siRNAs are used

as input signals to trigger destruction of specific target mRNAs

tagged with siRNA-specific sequence motifs (TAGs). Due to

the availability of multiple siRNAs and their cognate targets,

multiple inputs are possible and enable complex Boolean

operations such as (A AND B AND C) OR (D AND E). For the

AND gate (Figure 2B), administration of two different input

siRNAs (siRNA1 = 1 AND siRNA2 = 1) trigger destruction of two

targeted mRNAs harboring respective target sequences (TAG1

and TAG2). mRNA destruction prevents translation of coen-

coded LacI, thereby inducing de-repression of the PCAG

promoter fused to LacI-specific lacO operator sites, finally

resulting in monomeric red-fluorescent protein (dsRed) expres-

sion (dsRed = 1). Administration of only one (siRNA1 = 1 XOR

siRNA2 = 1) or no (siRNA1 = 0 AND siRNA2 = 0) input siRNA

results in LacI production and subsequent silencing of dsRed

(dsRed = 0) (Figure 2B).

An Epigenetic Memory Device

A fundamental characteristic of all data processing devices is the

capacity to store information. In order to emulate data storage in

a biological system as the basis of potential biocomputing

devices, a mammalian memory module was developed with the

storage capacity of 1 bit (Kramer et al., 2004b). This bistable

toggle switch consists of two promoters driving expression of

two different transsilencers that mutually repress these

promoters (Figure 2C). The first promoter PSV40(1) triggers

expression of SEAP and pristinamycin-inducible protein (PIP)-

KRAB, which, in the absence of PI, binds to the PIP-specific oper-

ator (PIR) operator 30 of the second promoter (PSV40[2]), thereby

repressing PSV40(2). In the presence of PI, PIP-KRAB is released

from PIR and PSV40(2) triggers transcription of E-KRAB, which, in
GOI transcripts, reduces GOI expression even further based on a RNA interference-based mechanism eliminating tagged GOI transcripts. In the presence of
IPTG, GOI expression is de-repressed and shRNA production is repressed by TetR, resulting in an increase in the activation of GOI expression by more than
100. The system enables dose-dependent expression of eGFP or induction of apoptosis by regulated expression of Bax.
(E) Hysteretic gene switch based on a transcription cascade. Expression of SEAP and the TET-dependent transactivator tTA is activated in a positive feedback
loop, where tTA triggers activation of the minimal promoter PhCMVmin. The positive feedback loop is interrupted by the binding of the repressor
E-KRAB to its operator ETR in the absence of EM. Hysteresis is observed when the EM concentration in the medium is gradually increased and then decreased.
(F) Bimodal and hysteretic gene switch based on a positive feedback loop. In the presence of doxycycline (DOX) PTET is activated in a positive feedback loop by the
reverse TET-dependent transactivator (rtTA). eGFP encoded on the same cistron is co-expressed with rtTA. With increasing DOX concentrations, the number of
fluorescent cells increases. When the DOX concentration is first increased and then decreased, hysteretic switching behavior of eGFP expression is observed.
logy 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved 291
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Figure 2. Synthetic gene networks
performing basic computational functions
(A) Boolean algebra in mammalian cells. NAND gate
based on a transcriptional cascade. In the absence
of erythromycin (EM = 0), ET1 activates its promoter
PETR, driving expression of PIT, which activates its
cognate promoter PPIR in the absence of pristinamy-
cin I (PI = 0). Only in the absence of both antibiotics
(EM = 0 AND PI = 0) SEAP expression is induced
(SEAP = 1). In all other configurations, SEAP expres-
sion is repressed (SEAP = 0).
(B) AND gate based on modulation of posttranscrip-
tional expression. Addition of siRNA triggers destruc-
tion of its target mRNA harboring a specific comple-
mentary TAG sequence. mRNA decay prevents LacI
translation, thereby leading to de-repression of
PCAG and expression of the reporter dsRed. Only in
the presence of both siRNAs (siRNA1 = 1 AND
siRNA2 = 1) is dsRed expression active (dsRed = 1).
(C) Bi-stable memory. The bi-stable memory circuit
consists of two promoters, each driving expression
of a repressor to silence the other one. PIP-KRAB
binding to PIR silences the adjacent promoter
PSV40 in the absence of PI, whereas E-KRAB binding
to ETR silences the upstream promoter in the
absence of EM. The reporter SEAP is cocistronically
expressed with E-KRAB via the internal ribosome
entry site (IRES). Once one of the promoters has
been activated by the addition of the respective anti-
biotic, the expression state is maintained, even after
removal of the regulating drug (without antibiotics).
(D) Time-delay and band-detection circuit. Addition
of biotin triggers BirA-catalyzed covalent biotinyla-
tion of the herpes simplex virus protein 16 (VP16)
transactivation domain fused to the avitag biotinyla-
tion signal (AT). Biotinylated VP16 binds to streptavi-
din (SA) fused to the TET repressor TetR, which
binds to its cognate promoter PTET and results in
VP16-activated transcription of the reporter SEAP.
Time-delay circuit: A short pulse of biotin triggers
formation of biotinylated VP16, which accumulates
in the cell. Therefore, even after removal of
exogenous biotin, SEAP expression is sustained
(time-delay function) until biotinylated VP16 has
been degraded by the proteasome. Addition of
TET (+ TET) overrides the time-delay switch by
dissociating TetR from PTET. Band-detection func-
tion: Addition of increasing concentrations of biotin
to the circuit first correlates with increasing SEAP
expression due to the increase in biotinylated
VP16. A further increase in the biotin concentration
in the medium results in a dose-dependent decrease
in SEAP production since binding of biotinylated
VP16 to TetR-Streptavidin is competitively inhibited
by free biotin.
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the absence of EM, binds to the ETR operator 30 of PSV40(1) and

represses this promoter. Administration of EM releases E-

KRAB from ETR, which results in derepression of PSV40(1) and

coordinated expression of PIP-KRAB and SEAP (Figure 2C). As

validated in transgenic mammalian cells and in mice for up to 3

weeks, this epigenetic toggle switch maintained and inherited

the SEAP expression status unless SEAP expression switches

were induced by addition of either PI (SEAP repression) or EM

(SEAP induction) (Kramer et al., 2004b). The dynamic range of

this first-generation mammalian epigenetic memory device was

significantly expanded by engineering intronically encoded

shRNAs into the transsilencers, which eliminated leaky tran-

scripts, bypassing from transsilencer-mediated transcription

shut down, via siRNA interference (Greber et al., 2008).

Synthetic Time-Delay and Band-Detection Circuits

Genetic circuitries, exhibiting time-delayed expression kinetics,

were shown to modulate nuclear factor kappa B activation,

to manage quorum-sensing crosstalk and to control the circadian

clock (Weber et al., 2007c). In order to rationally design such

time-delayed expression circuits, vitamin H (biotin) was applied

to act as the signaling molecule (Weber et al., 2007c, Figure 2D).

In the presence of regulation-effective concentrations of biotin

constitutive expression of BirA mediates biotinylation of a syn-

thetic peptide tag (avitag, AT). Biotinylation of an avitag-VP16

fusion protein enables heterodimerization with a streptavidin

(SA)-tagged TetR that leads to reconstitution of a synthetic

TET-dependent transcription factor (TetR-SA-biotin-AT-VP16),

which induces expression from TET-responsive promoters

(PTET, Weber et al., 2007b). Time-delayed transgene expression

is observed when applying a short biotin pulse to the system,

thus triggering the accumulation of biotinylated VP16, which

persists in the cell and triggers SEAP expression even after

removal of biotin from the culture medium. The duration of

time-delayed gene expression is, therefore, determined by the

amount of biotinylated VP16 at the time of biotin removal and

by the degradation rate of AT-VP16, which can be modified by

fusion to proteasome-targeting PEST sequences. A complemen-

tary study (Weber et al., 2007b) showed that such time-delayed

gene expression can act as a filter to eliminate noise originating

from inducer fluctuations and provide rather uniform expression

kinetics.

Besides time-delayed expression kinetics, it was shown that

the same biotin-triggered circuit acts as a band-detection

network, responding only to a specific range of biotin concen-

trations. Gradual increase of biotin concentrations triggers

dose-dependent SEAP production until a plateau is reached,

indicating that at least one component of the signaling network

had become limiting; the PTET promoter was probably satu-

rated with bound synthetic transcriptions factors. As the biotin

concentration continues to increase, free biotin competes with

biotinylated VP16 for the SA binding sites (TetR-SA-biotin,

biotin-AT-VP16), which produces a transactivation-incompe-

tent TetR-SA-biotin fusion protein and leads to graded deacti-

vation of the target promoter (Figure 2D). Such band-detection

devices play crucial roles in the differentiation of the developing

embryo, where they translate the local concentration of

a gradient-forming signaling molecule into a threshold-based

steady activation or repression of differentiation-determining

genes.
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From Individual Cells to Interconnected Multicellular
Assemblies and Synthetic Ecosystems
All the above-mentioned genetic networks operated within single

mammalian cells and required the stable transfection of up to six

expression cassettes, which is technically challenging and time-

consuming (Weber et al., 2007c). The next generation of mamma-

lian cell-based synthetic gene networks will rely on the design

principle of electronic devices, whereby specialized integrated

circuits (microchips), which fulfill basic computational functions

(memory, logic functions, i/o interface), are interconnected to

form higher-order computational units that process signals not

only inside individual cells but also within and across cell popula-

tions of the same or different species as well as in tissues, organs,

and entire organisms. In order to establish intercellular crosstalk

among specialized mammalian cells, cell-to-cell communication

channels must be designed to coordinate and orchestrate the

overall response of the multicellular assemblies.

Cell-to-Cell Communication: Molecular Cell Phones

Basic principles of synthetic cell-cell communication networks

were established and developed first in bacteria (Bulter et al.,

2004) and then in yeast (Chen and Weiss, 2005). The first

synthetic mammalian communication device entirely assem-

bled from genetic parts was recently shown to manage informa-

tion transfer from a sender to a receiver cell in a contact-free

manner (we coined the term ‘‘molecular cell phone’’ for a cell-

to-cell communication device, Figure 3A, Weber et al., 2007a).

Such molecular ‘‘wireless’’ broadcasting included a sender

cell, engineered for constitutive or inducible expression of

a liver-derived alcohol dehydrogenase to convert traces

(& range) of spiked ethanol into acetaldehyde, which, having

a boiling point of 21�C, diffuses via the gas or liquid phase to

the receiver cells (Weber et al., 2007a). The receiver cells

were engineered for an acetaldehyde-inducible expression

unit consisting of the Aspergillus nidulans-derived transcription

factor AlcR that activates the chimeric target promoter PAIR in

the presence of acetaldehyde (Weber et al., 2004). Considering

the acetaldehyde production kinetics and its transfer from the

sender to the receiver cells according to Fick’s law of diffusion,

this molecular cell phone can be used to design distance and

cell-density-controlled expression scenarios. In order to eval-

uate dependence on distance, culture wells containing the

receiver cells were placed at gradually increasing distances to

the culture wells harboring the sender cells, resulting in a gradual

decrease in SEAP production and demonstrating that this

system translates the spatial configuration of two cell popula-

tions into a graded protein production profile (Figure 3A, inset

i; Weber et al., 2007a). It could also be demonstrated that the

cell-to-cell communication system enables cell-density-

controlled induction of SEAP expression; high numbers of

sender cells triggered an immediate onset of SEAP production,

whereas decreasing populations of sender cells correlated with

a longer time delay until SEAP expression was initiated (Fig-

ure 3A, inset ii; Weber et al., 2007a). Such cell-density-depen-

dent induction of transgene expression can be used to design

autonomously operating bioprocesses, where expression of

product genes is induced automatically once an optimum cell

density has been reached. An increasing size of the sender

cell population correlated with increasing levels of SEAP

production, demonstrating the potential use of this
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communication system in mammalian cell-based quorum-

sensing (biopharmaceutical manufacturing) configurations

(Figure 3A, inset iii; Weber et al., 2007a). This acetaldehyde-

based communication system was also shown to function in

multistep signal processing cascades and was successfully

assembled into the first synthetic hormone system in mice in

which sender cell inserts were communicating across the living

animal to instruct remote receiver cell implants to produce

a human glycoprotein in the bloodstream of treated mice

(Weber et al., 2007a). More recently, mammalian system was

described in which sender cells were engineered to produce ni-

tric oxide as diffusible messenger that triggers c-fos promoter

and reporter gene expression in engineered receiver cells

(Wang et al., 2008). Here, quorum-sensing like behavior was

produced by integrating sender module into receiver cells under

negative feedback control.

Synthetic Ecosystems

The capacity to connect several cells or organisms with each

other by molecular communication mechanisms enables the

design of synthetic ecosystems to emulate and analyze the

coexistence and interactions of different species (Weber et al.,

2007a). For example, a synthetic predator-prey ecosystem

A

B

Figure 3. Cell-to-cell communication and
synthetic ecosystems
(A) Cell-to-cell communication. The sender cell is
genetically engineered to express alcohol dehy-
drogenase (ADH), resulting in the conversion of
ethanol to acetaldehyde, which, with a boiling point
of 21�C, diffuses through the gas or liquid phase to
the receiver cells. The receiver cell harbors the
Aspergillus nidulans-derived transcription factor
AlcR that activates its cognate promoter PAIR in
the presence of acetaldehyde, resulting in the
expression of the reporter SEAP. (i) Dependence
on distance: SEAP expression decreases with
increasing distance between the sender and
receiver cultures. (ii) Dependence on time: Early
onset of SEAP production in the receiver cells
correlates with a high number of sender cells,
whereas a lower number of sender cells correlates
with a longer delay before to the induction of gene
expression. (iii) Dependence on concentration:
After a fixed period, the level of SEAP expression
reflects the population density of the sender cells.
(B) Synthetic predator-prey interactions. Chinese
hamster ovary (CHO) cells were genetically engi-
neered to express b-lactamase fused to an IgG-
derivedsecretionsignal (sBla).Secretedb-lactamase
triggers degradation of ampicillin in the medium,
thereby enabling the survival of E. coli cells, which
grow, consume nutrients, and produce toxic by-
products, which in turn reduces the viability of the
CHO cells. When the whole system is semi continu-
ously supplied with fresh medium containing ampi-
cillin, the population densities of the parasite (E. coli)
and the host (CHO) oscillated with shifted phases.

with oscillating population dynamics was

recently described. It consists of E. coli

as the predator and of Chinese hamster

ovary (CHO-K1) cells, engineered for

constitutive production of a secreted b-

lactamase, as the prey. Both species

were cocultivated in standard culture
dish equipped for semicontinuous supply of fresh medium and

ampicillin. Upon start of the predator-prey ecosystem, E. coli

growth is restricted by ampicillin and CHO cells proliferate,

thereby secreting b-lactamase, which lowers ampicillin levels.

As ampicillin concentrations decrease, E. coli recovers and

resumes growth, which compromises viability of the mammalian

cells due to bacteria-mediated nutrient depletion. Because

a declining CHO cell population produces lower amounts of

secreted b-lactamase, ampicillin levels continue to increase,

which decimates E. coli and allows recovery of the mammalian

cell population to initiate another cycle of oscillating population

dynamics (Figure 3B).

This synthetic prokaryote-eukaryote ecosystem could serve

as a model for the design of synthetic host-pathogen ecosys-

tems that characterize disease dynamics with unmatched preci-

sion and help devise or refine therapeutic strategies accordingly.

Future Directions of Mammalian Synthetic Biology
Mammalian cell-based synthetic biology is expected to develop

into two major directions: (i) the knowledge-producing ‘‘basic

synthetic biology’’ enabling fundamental scientific discoveries

and providing insight into operation dynamics of complex
294 Chemistry & Biology 16, March 27, 2009 ª2009 Elsevier Ltd All rights reserved
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natural systems using rationally designed synthetic replicas, and

(ii) ‘‘translational synthetic biology,’’ which leads from evidence-

based ‘‘basic synthetic biology’’ to sustainable solutions for

pertinent public health problems. Both synthetic biology disci-

plines will gather tremendous momentum by integrating recent

advances in ‘‘enabling technologies’’ such as large-scale DNA

synthesis (Gibson et al., 2008), (single-cell) analytics (Cordey

et al., 2008), nanotechnology (Maerkl and Quake, 2007), and

materials science (Lutolf and Hubbell, 2005), as well as

‘‘enabling sciences’’ including systems biology and bioinfor-

matics, which quantitatively capture the dynamics of biological

phenomena at a systems scale (Aebersold and Mann, 2003).

Future developments in ‘‘basic synthetic biology’’ will largely

be dependent on standardized orthogonal mammalian cell-

compatible biologic devices developed de novo or being adap-

ted for use in mammalian cells following blueprints established in

prokaryotes. Such devices might include novel input interfaces

triggered by light (Levskaya et al., 2005) or by electricity to

enable electrogenetic interfaces and harness advances in elec-

tronics for control of living systems. Mammalian versions of

complex synthetic gene networks showing oscillating expres-

sion dynamics such as described for E. coli (Elowitz and Leibler,

2000; Stricker et al., 2008) have just been developed (Tigges

et al., 2009). Rewiring of intracellular signaling pathways

enabling synthetic connection of any receptor-mediated input

with any desired target gene such as recently established in

yeast still lacks similar implementation in mammalian cells (Yeh

et al., 2007). Also, mammalian homologs of complex two-way

communication at multicellular scale such as recently estab-

lished in E. coli by engineering of orthogonal acylhomoserine-

lactone-based circuits (Balagadde et al., 2008) could enable

multichannel intercell signaling to coordinate cell growth and

differentiation of organ-like cellular assemblies or might be

used to design prosthetic hormone signaling for future therapies.

Mammalian cell-based ‘‘translational synthetic biology’’ is

expected to foster advances in drug discovery, gene therapy,

tissue engineering, and biopharmaceutical manufacturing. For

drug discovery, the synthetic reconstruction of healthy or patho-

logic signaling cascades in an orthogonal host could be an ideal

approach to elucidate signal processing dynamics as exempli-

fied at the reconstruction of the B cell antigen receptor signal

transduction pathway in insect cells (Wossning and Reth,

2004). For gene therapy, semisynthetic gene networks are

expected to emerge that enable engineered cells to autono-

mously sense a pathologic state (e.g., abnormal concentrations

of glucose) and coordinate a corresponding therapeutic action

(e.g., secretion of insulin) in a self-sufficient manner. For tissue

engineering, reprogramming of differentiation pathways to

coordinate (stem) cell fate in artificial tissues using synthetic

signaling and transcription networks could become an essential

technology for the treatment of tissue-specific diseases.

For biopharmaceutical manufacturing, mammalian-cell-based

translational synthetic biology might become fundamental for

targeted manipulation of product quality (Tomiya et al., 2003)

or expanding protein function by introduction of non-canonical

amino acids (Summerer et al., 2006).

Although mammalian cell-based translational synthetic

biology is unique in having a great potential to improve human

therapies in the not-so-distant future, applications of synthetic
Chemistry & Bio
biology are already in use today, for example for pest control.

The Mediterranean fruit fly (Ceratitis capitata) is an insect pest

that is inflicting heavy economic damage on agriculture. Fu

et al. (2007) designed a synthetic circuit for autoregulated

expression of tTA, which was engineered for female-specific

splicing and could only accumulate to toxic levels in female flies

living in a TET-free environment. Production and release of trans-

genic male flies will compete with wild-type flies for mating with

female flies, thereby infiltrating the fly population with the

synthetic circuitry that will rapidly disseminate within the wild-

type male population, whereas the female population is

constantly decreasing until the fly will be extinct (Fu et al., 2007).

In conclusion, synthetic biology is rapidly developing from

a loose network of scientists with different education and

scientific background into an interdisciplinary global community

convinced that the engineering of biology—in essence the

rational design of biological systems in a systematic manner—

might offer solutions to major societal and health-associated

challenges of the 21st century.
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